Excess slurry is collected in a container and is recycled. The blocks fall into recessed regions in the substrate. Adhesives and spacers are deposited onto the substrate **504**. Display material is placed onto the substrate **508**. This material may comprise polymer-dispersed liquid crystal, cholesteric liquid crystal, electrophoretic liquid crystal, upconverting phosphor, or downconverting phosphor **512**.

[0091] FIG. 15B shows the overall process of fabricating a display device wherein a flexible substrate 120 and a display tape 160 undergo processing and are subsequently coupled. There, the flexible substrate is advanced along a first process line and advances through a first set of support members 122. A first slurry 124 containing a plurality of blocks is dispensed onto the flexible substrate. A second slurry 126 containing a plurality of blocks is again dispensed onto the substrate. Excess slurry is collected in a container 128 and is recycled. The blocks fall into recessed regions in the substrate. It should be noted that a polarizing or retarding film could be deposited onto the substrate before the FSA process is applied to the substrate. Flexible substrate 120 is advanced through a second set of support members 130. An interconnect 132 is then deposited onto flexible substrate 120. The flexible substrate is then advanced to point 134. In conjunction with this process, display tape 160 undergoes a separate process. Display material is placed onto at least one side of the display tape 160. Display tape 160 is advanced through a first set of support members 164. The display material is patterned or layered 168. This display material may comprise polymer-dispersed liquid crystal, cholesteric liquid crystal, electrophoretic liquid crystal, upconverting phosphor, or downconverting phosphor. Display tape 160 is advanced through a second set of support members 170. An interconnect 172 is either deposited or etched onto the display tape 160. The display tape is then advanced to point 134 where the display tape is coupled to the substrate. A conveyor belt 174 surrounds the support members.

[0092] While the process may follow these steps, it should be noted that it is also possible that one portion of the display will be singulated prior to the display tape being attached to the substrate.

[0093] FIG. 16 relates to a method of picking and placing of objects onto a flexible substrate after the FSA process has been applied to the substrate. A slurry containing a plurality of objects is dispensed onto the substrate 90. The objects fall into recessed regions in the substrate. The excess slurry is collected and recycled 91. The substrate is checked for empty recessed regions 92. This checking is performed by an electronic eye that views the substrate. Objects are robotically placed into empty regions found in substrate 94. A metalization material is placed onto at least one of the substrate's surfaces and is patterned or etched 96. The display tape is coupled to the substrate 98.

[0094] FIG. 17 relates to the FSA process and the coupling of the display material with the substrate. First, a slurry containing a plurality of blocks is deposited onto the substrate 400. If the recessed regions are of equivalent size, step 450 is then followed. If not, a first slurry with a first plurality of objects is deposited onto the substrate 410. Excess slurry is caught and recycled 415. Once this step is performed, a second slurry with a second plurality of objects is placed onto the substrate 420. Excess second slurry is recycled into a second container 425. A metal interconnect is then deposited onto the substrate 435. After these steps, a display material is deposited onto the substrate 430.

[0095] FIG. 18 shows a flexible continuous substrate wherein two displays are created. Display device 52 is larger

than display device 50. This shows that multiple displays of different sizes can be created on the substrate through an in-line process. Alternatively, FIG. 19 shows displays 54 and 56 of similar size.

[0096] In addition to multiple displays being able to be made different sizes, the substrate itself may have different sized recessed regions. This allows the substrate to receive various sized blocks or devices. FIG. 20 shows a cross-sectional view of the recessed regions in the substrate. Recessed region 65 is smaller than recessed region 67.

[0097] FIG. 21 shows an embodiment of the overall in-line process of the invention. A web apparatus machine 119 is used to process the substrate. At step 120, apertures are created in the flexible substrate. These apertures can be created by a number of methods. For example, the apertures can be punched into the substrate. Another method involves using a template to create the apertures. A laser, chemical or plasma etching could also be used to create the apertures. The substrate advances over a plurality of support members 122. The substrate goes in between support members 123 and 123B. The FSA process is applied to the substrate. FSA comprises a slurry that contains a plurality of functional blocks. These blocks have, in one embodiment, a circuit element (not shown) that drives the picture element (not shown). The FSA process occurs at block 124. It is then applied again at 126. The excess slurry is collected in container 128. Then, the flexible substrate advances through support members 130. The flexible substrate then has an interconnect 131 deposited on the top of the flexible substrate 132. The resulting flexible substrate advances over a guide member and meets at a point 134 wherein it is coupled to a display tape that in one embodiment is a flexible substrate that includes separate regions each having a display material on this flexible substrate. A different portion of the process involves the display tape 160. Before the display tape is coupled with the substrate, the display tape goes through its own separate process that is described below.

[0098] The display tape has display material 162 deposited on at least one side of the display tape. There are a variety of ways that display material may be deposited onto the display tape. For example, display material may be sprayed onto the display tape. The display material also may be placed on a screen over the display tape. Another method is to place the display tape into a container that holds the display material. The display tape advances through support members 164. The display tape then has display material layered or patterned on the display tape at 168. This display tape then advances through another plurality of support members 170. A large area metal interconnect is then deposited or etched onto the display tape 172. This may be performed by inkjet, lithography and etch, screen print, laser etch, or deposit 174. In one embodiment of the invention, this large interconnect is a cover glass electrode. At point 134, the display tape is coupled with a substrate.

[0099] FIG. 22 shows a display material being placed through a screen 180 onto display tape 168. The screen 180 has a desired pattern created by holes that go through the screen 180. This desired pattern may be dictated by a customer or by the manufacturer.

[0100] Another method of placing display material onto the display tape is shown in FIG. 23. FIG. 23 shows a top view of display material being laser etched onto display tape 168. The etching occurs when the high intensity light from the laser 182 strikes the display material on top of the display tape 168. A pattern is created in the display material by the laser 182.